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Abstract
Dirac’s approach to incorporate the radiation into the equation of motion
for a point charge in classical electrodynamics is based on three structural
components: the point model for the electron, the Maxwell equations and the
principle of relativity. These fundamental components lead to an equation
of motion that involves an undetermined 4-vector Bµ. The Lorentz–Dirac
equation corresponds to the case in which Bµ = 0, but in general there is a
large family of 4-vectors Bµ consistent with the above three basic components.
This paper deals with the study of these equations of motion in the case of
the three simplest permissible choices for Bµ. We show that these equations
admit as exact solutions the motion of an arbitrary number of identical charges
that are equally spaced in a circumference and that rotate at constant angular
velocity. These solutions show that the rate of radiation emitted by the system
of charges is completely independent of the 4-vector Bµ. We also study the
restrictions over the dimensionless parameters that appear in the four-vectors
Bµ, in order that the trajectories of the corresponding equations cannot be
discriminated from the trajectory determined by the Lorentz–Dirac equation in
a practical case, as for instance the design and operation of a synchrotron.

PACS number: 03.50.z

1. Introduction

Dirac’s approach to the equation of motion for the electron in classical electrodynamics is
based on three essential components [1]. In the first one, the electron is modelled as a point
charge from the very beginning. In the second one, Dirac assumes the validity of the Maxwell
equations even at arbitrarily small distances from the electron. Finally, the third essential
component is the principle of relativistic covariance, specially in what is concerned with the
conservation of energy and momentum. Dirac arrived at the following equation:

v̇µ = (e/mc)Fµλvλ + τ0{v̈µ − v̇2vµ/c2} + Ḃµ, (1.1)

where e and m are the electron charge and mass, respectively, c is the speed of light, Fµν is the
external field acting on the electron and vµ is its 4-velocity; the dots over the symbol denote

0305-4470/06/268543+14$30.00 © 2006 IOP Publishing Ltd Printed in the UK 8543

http://dx.doi.org/10.1088/0305-4470/39/26/019
http://stacks.iop.org/JPhysA/39/8543


8544 D Villarroel

proper time derivatives of an order equal to the number of dots, v̇2 = v̇αv̇α , the signature of
the metric is +2, the system of units is the Gaussian one and τ0 is given by

τ0 = 2e2

3mc3
, (1.2)

which is a very small time, of the order of 10−23 s for an electron.
The 4-vector Bµ in equation (1.1) must be such that

v µḂµ = 0. (1.3)

In his paper Dirac makes the choice Bµ = 0 based on a criterion of simplicity, the case
in which equation (1.1) becomes the well-known Lorentz–Dirac equation. But it is important
to emphasize that the hypothesis of simplicity is independent of the above-mentioned three
essential components which by themselves are unable to determine a unique Bµ. For instance,
Dirac exhibits in his paper a permissible Bµ that is proportional to the fourth power of the
parameter τ0 of equation (1.2).

The study of equation (1.1) with a non-zero 4-vector Bµ, named enlarged Lorentz–Dirac
equations in this paper, has received little attention in the literature. It seems that the only
exception is a paper by Eliezer [2], where this author remarks that a fully relativistic treatment
must also consider the angular momentum conservation, in addition to the energy and linear
momentum conservation taken into account in Dirac’s paper. This requirement imposes the
following additional restriction on the 4-vector Bµ:

vµBλ − vλBµ = dAµλ

dτ
, (1.4)

where Aµλ(τ) depends on the 4-velocity vµ and its derivatives evaluated at the proper time τ .
As Eliezer pointed out, the 4-vector Bµ proposed by Dirac does not fulfil equation (1.4), and
consequently, it has to be discarded. In his paper Eliezer constructed Bµ proportional to τ 2

0 ,
namely,

Bµ(2) = k2τ
2
0 {v̇2vµ/c2 − (2/3)v̈µ}, (1.5)

where k2 is an arbitrary dimensionless parameter. The 4-vector (1.5) is a permissible one since
it satisfies equations (1.3) and (1.4) with

Aµλ = −(2/3)k2τ
2
0 {vµv̇λ − vλv̇µ}. (1.6)

The present paper deals with two problems associated with the enlarged Lorentz–Dirac
equations. The first one consists in the construction of the 4-vector Bµ that follows in
complexity to the one given by Eliezer in equation (1.5). We show that there is no Bµ

proportional to τ 3
0 , and we construct the two possible 4-vectors Bµ proportional to τ 4

0 . The
second problem consists in the study of exact solutions of the enlarged Lorentz–Dirac equations
of Eliezer as well as the enlarged equations proposed here. It turns out that these equations,
as the Lorentz–Dirac equation [3], admit as exact solutions the motion of an arbitrary number
of identical charges that are equally spaced over a circumference and that rotate at constant
angular velocity.

The existence of these exact analytic solutions is a remarkable mathematical result since
to find exact solutions of highly nonlinear equations of motion is rather infrequent. The
above-mentioned motion requires, of course, the assistance of appropriate external fields;
these consist of a uniform time-independent magnetic field orthogonal to the plane where the
charges are rotating, together with an electric field tangent to the circumference of motion
and with a magnitude that takes a constant value on it. It is this relatively simple structure of
the external fields which allows us to find the exact solutions presented in section 4. In turn,
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the external fields are generated by idealized sources. Thus, the electric field is generated
by an infinitely long solenoid whose axis coincides with the z-axis and is fed with a current
that increases linearly with time. Of course, this is not a practical solenoid, but practical
aspects play here only a tangential role since our main interest consists in the study of the
mathematical properties of the enlarged Lorentz–Dirac equations. Even if inside the solenoid
there is a magnetic field that increases linearly with time, outside the solenoid, where the
motion of the charges takes place, the magnetic field due to the solenoid is identically zero.
Therefore, the magnetic field that holds the charges in a circular orbit must be generated by a
source completely independent of the solenoid.

The exact solutions constitute a powerful tool to study the properties of the enlarged
Lorentz–Dirac equations. For example, they allow us to obtain a clear and definite answer
for the rate of radiation emitted by the system of charges, which can then be compared with
the one obtained, independently of the equations of motion, by computing the flux of energy
across the surface of a sphere that encloses the charges. It turns out that, as in the case of the
Lorentz–Dirac equation, both results coincide, showing the full consistency of the enlarged
Lorentz–Dirac equations with the Maxwell equations, as expected. The exact solutions also
allow us to study the departure between the trajectories that the different equations of motion
determine for an electron in the same external field. To this respect, the conclusion is that for
the highest energies attainable for an electron in synchrotrons nowadays (which are less than
100 GeV) and for reasonable values of the dimensionless parameters that appear in the enlarged
Lorentz–Dirac equations, the different trajectories cannot be discriminated by experimental
means. In other words, even if from a strict mathematical point of view the trajectories are not
the same, the differences between them are too small to play a role in the design and operation
of a practical device such as a synchrotron.

A widely existing conception in classical electrodynamics is that under the influence
of a given external electromagnetic field, an electron must have a perfectly well-defined
and unique trajectory. This contrasts, however, with the actual situation, where several
equations of motion have been proposed, which give rise to different trajectories in the same
external field.

The equations of motion for a point charge can be classified into two categories. The
first one consists in the equations of motion which, like the Lorentz–Dirac equation and
the extended Lorentz–Dirac equations, are derived starting from the Maxwell equations as a
fundamental component. The second category consists of the alternative equations of motion,
like the equations proposed by Eliezer [4], Mo and Papas [5], Herrera [6], Landau and Lifshitz
[7] and Bonnor [8]. None of these equations can be considered fully satisfactory. On one
hand, the equations of the first category suffer of pathologies such as self-acceleration, where
the electron is accelerated even in the absence of an electromagnetic field; these unphysical
solutions are eliminated by imposing the vanishing of the acceleration in the remote future, but
then the equations are in conflict with the principle of causality because the electron begins to
accelerate before the force is actually applied. On the other hand, the equations in the second
category, which have been proposed precisely to avoid the troubles of the equations of the
Lorentz–Dirac equation type, are in conflict with the Maxwell equations because they lead
to an incorrect rate of radiation [9–12]. This trouble of the alternative equations of motion
seems to be worse than the acausalities that affect the equations of the Lorentz–Dirac type,
which are of the order of 10−23 s and that are therefore too small to have any measurable
consequence. According to this view, the use of the Maxwell equations is an imperative to
obtain the equation of motion for a point electron, which then singularizes Dirac’s approach.

In spite of that, Dirac himself remarks that his procedure does not lead to a unique equation
of motion; this feature has been almost completely overlooked in the literature. The three
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essential components of Dirac’s approach make Eliezer’s equation (defined by (1.1) and (1.5))
as well as the equations in section 3 of this paper as permissible as the Lorentz–Dirac one.
It is perhaps the preconception that there must be a ‘correct equation of motion for a point
charge’ which has played a determinant role to this respect. The hypothesis of simplicity of
Dirac appears to be direct, simple and natural, but certainly it does not have the same physical
status and strength as the three essential components, being rather a choice or prescription.

There are several derivations of the Lorentz–Dirac equations in the literature that do
not use Dirac’s hypothesis of simplicity; however, a close examination of these derivations
shows that they contain assumptions or prescriptions that play a similar role to the criterion of
simplicity of Dirac. We illustrate this aspect by considering two of the more simple derivations,
namely, the one of Barut [13–15] and the other of Landau and Lifshitz [7]. The idea in Barut’s
derivation is to add the electron’s own field to the external electromagnetic field that appears
in the Lorentz force. This procedure cannot be carried out directly because the self-field of the
electron is singular when it is evaluated at the electron position. To deal with this trouble Barut
evaluates the electron field, given by the Lienard–Wiechert formula, on the electron worldline
and considers that the retarded point that appears in the Lienard–Wiechert formula is also on
the electron worldline and very close to the position of the electron. Strictly speaking, this
is an improper procedure since the second point is certainly not the retarded point associated
with the first one. Nevertheless, the procedure is successful because in the limit when the
two points coincide the Lorentz–Dirac equation is obtained, after hiding a divergent quantity
through the renormalization of the electron mass. Thus, Barut’s method cannot be justified
starting from the first principles, and the special way by means of which the self-field of
the electron is taken into account can be considered as replacing the criterion of simplicity
of Dirac.

Landau and Lifshitz [7] proposed to incorporate the effect of the electron’s own field by
constructing a 4-vector orthogonal to the electron’s 4-velocity and that reduces in the non-
relativistic limit to the already known form of the radiation reaction force, obtaining in this way
the Lorentz–Dirac equation. But this procedure, by no means, implies that that the 4-vector
Bµ in equation (1.1) is equal to zero since Bµ of equation (1.5) as well as those presented in
section 3 do not alter the non-relativistic limit of the second term on the right-hand side of
equation (1.1).

As will be shown in the next section, the study of the 4-momentum associated with the
electron field allows us to see in a clear way that the criterion of simplicity corresponds to a
special choice or prescription to deal with the singular nature of the electron field. The existence
of arbitrary dimensionless parameters in the 4-vector Bµ may appear to be disappointing, but
they are an unavoidable consequence of the point model for the electron. In particular, in the
Eliezer equation, that is, equation (1.1) with Bµ in equation (1.5), each different choice of the
parameter k2 gives rise to a different trajectory in the same external field. Nevertheless,
this situation does not have catastrophic consequences because, as will be shown in
section 5, for reasonable choices of the dimensionless parameters the different trajectories
cannot be discriminated from the trajectory determined by the Lorentz–Dirac equation in a
relevant practical situation as in a synchrotron.

2. The electron 4-momentum

In order to obtain physical insight into the origin of the 4-vector Bµ in equation (1.1), it is
convenient to derive this equation starting from the 4-momentum associated with the retarded
Lienard–Wiechert field generated by a point electron. In what follows we outline such a
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derivation. As usual in a relativistic field theory, the 4-momentum Pµ is given by

Pµ = 1

c

∫
�

Tµν d�ν, (2.1)

where Tµν is the energy–momentum tensor determined by the electron’s retarded Lienard–
Wiechert electromagnetic field, and � is any space-like surface that intercepts the electron
worldline at the point zµ(τ ). The energy–momentum tensor Tµν , like the retarded Lienard–
Wiechert field, is singular when the field point xµ is located on the electron worldline. In
particular then, strictly speaking, P µ of (2.1) is meaningless because the integrand is singular
at the point zµ(τ ) where the space-like surface � cuts the electron worldline. Therefore, in
order to give a meaning to (2.1) it is absolutely necessary to isolate the singular point zµ(τ ) by
means of a two-dimensional surface σ contained in � and that encloses this point, followed
by a limiting procedure by means of which σ is shrunk to zµ(τ ).

A deeper insight on the physical meaning of the different terms that appear in the enlarged
Dirac’s equation of motion (1.1) is obtained with the help of Teitelboim’s splitting of the
energy–momentum tensor [16, 17], namely,

Tµν = T r
µν + T b

µν, (2.2)

where T r
µν contains the terms of Tµν that behave as ρ−2 in the invariant distance ρ =

vµ(xµ − zµ)/c, while T b
µν is built up with the terms that behave like ρ−3 and ρ−4. Both

parts of Tµν satisfy

∂νT r
µν = ∂νT b

µν = 0, (2.3)

off the electron worldline. This means that there is no interchange of energy–momentum
between T r

µν and T b
µν in any four-dimensional volume that excludes the electron worldline.

Thus, T r
µν and T b

µν have dynamical independence everywhere except perhaps on the electron
worldline. In addition, T r

µν has no flux across light cones emanating from the electron worldline
into the future. The above properties of T r

µν imply that it represents energy–momentum that
detaches itself from the electron and leads an independent existence as soon as it is produced
by the electron [16, 17]. In other words, T r

µν describes the radiation emitted by the electron.
The splitting (2.2) induces a natural splitting of the 4-momentum (2.1) into the form

Pµ = P r
µ + P b

µ. (2.4)

The evaluation of P r
µ leads to

P r
µ = (2e2/3c5)

∫ τ

−∞
v̇2vµ dτ. (2.5)

It turns out that P r
µ is free of any ambiguity whatsoever since it is independent of the form of

the space-like surface � as well as of the two-dimensional surface σ and the limiting procedure
by means of which σ is shrunk to the point zµ(τ ). All that matters is the point zµ(τ ) where �

intercepts the electron worldline.
In contradistinction with T r

µν , the part T b
µν of Tµν is such that it has a non-vanishing flux

across the light cones emanating from the electron worldline into the future. Besides, T b
µν

satisfies the notable identity [18]

T b
µν = ∂λKµνλ, (2.6)

where Kµνλ is antisymmetric in indices ν and λ and depends only on retarded quantities.
Because of the Stokes theorem, equation (2.6) permits us to transform the integral over
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the space-like surface � that appears in the definition of P b
µ into an integral over the two-

dimensional surface σ plus an integral over a closed two-dimensional surface that lies on � and
is located at spacial infinity. It is easy to see that this last integral vanishes for an electron with
a uniform motion in the remote past. Thus, only the integral over the two-dimensional
surface σ remains. In particular, this means that P b

µ , in contradistinction with P r
µ of

equation (2.5), depends only on the proper time τ at which � cuts the electron worldline. The
physical interpretation of T b

µν is then obvious; it represents energy momentum that is tied to
the electron and is carried along with it. Consequently, P b

µ can be identified with the electron
4-momentum. Unfortunately, however, due to the strong singularities of T b

µν , the bound 4-
momentum P b

µ is, in contradistinction with P r
µ, highly dependent on the form of � near zµ(τ )

as well as on the choice of the two-dimensional surface σ and the limiting procedure by means
of which σ is shrunk to the point zµ(τ ). Precisely, these peculiarities are those that appear
reflected in the existence of a whole family of 4-vectors Bµ in equation (1.1).

If in a vicinity of zµ(τ ), the space-like surface � and the two-dimensional surface σ

are chosen as in Dirac’s paper, that is, if in a vicinity of zµ(τ )� coincides with the plane
orthogonal to the 4-velocity vµ and σ is the sphere of radius ε centred at the electron position
at the proper time τ , then the following value for P b

µ is obtained [16, 17]:

P b
µ = mvµ − (2e2/3c3)v̇µ, (2.7)

where m is the renormalized mass, that is, m = m0 + (e2/2εc2), with m0 the bare mass of the
electron. From equations (2.5) and (2.7), the equation

d

dτ

{
P r

µ(τ ) + P b
µ(τ)

} = (e/c)Fµνv
ν (2.8)

becomes the Lorentz–Dirac equation. In other words, the above choice of � and σ leads to
a 4-vector Bµ = 0 in equation (1.1). But this choice is not imperative from any fundamental
physical principle; the only critical restriction on the space-like surface � is that it must cut the
electron worldline orthogonally in order to make the electron mass renormalization possible
[19]. Other choices for � and σ will lead, in general, to a 4-vector Bµ different from zero. We
will not derive Bµ of equation (1.5) in this way, but it is not difficult to visualize the origin of
the dimensionless parameter k2 in equation (1.5). For example, it is possible to choose as the
two-dimensional surface σ an ellipsoid of revolution around the 4-acceleration v̇µ in the plane
orthogonal to the 4-velocity vµ. Now, if the lengths of the axes of this ellipsoid are chosen
as a = ε and b = kε, then the ellipsoid will coincide with the 2-sphere of Dirac when the
dimensionless parameter k is equal to one. But in the general case, when the ellipsoid is shrunk
to the point zµ(τ ), the limiting value will be a function of k because of the strong singularities
of T b

µν . Therefore. the dimensionless parameters that appear in the 4-vector Bµ are related not
only to the singular nature of the electron fields, but also to geometrical ingredients contained
in the surfaces � and σ and the way in which σ is shrunk to the point zµ(τ ) [20].

3. Enlarged Lorentz–Dirac equations

The construction of 4-vectors Bµ corresponding to powers of τ0 higher than 2 does not present
difficulties. In fact, Bµ in (1.1) has dimensions of 4-velocity, and therefore a balance exists in
(1.5) between the number of dots in each term inside the brackets and the power of τ0 in front
of it. Thus, the number of dots over v̇2 = v̇αv̇α is two, as is the number of dots in the term v̈µ
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and the power of τ0 in front of the bracket. For the construction of Bµ for higher powers of τ0

it is convenient to consider that the 4-velocity vµ satisfies the following relations:

v2 = −c2,

(vv̇) = 0,

(vv̈) = −v̇2,

(vv̈̇) = −3(v̇v̈),

(vv(4)) = −3v̈2 − 4(v̇ v̈̇ ),

(vv(5)) = −10(v̈ v̈̇ ) − 5(v̇v(4)),

(3.1)

where the notation v(4), v(5) is used for the derivatives of the 4-velocity of orders 4 and 5
respectively, and besides v2 = vαvα, (vv̇) = vαv̇α, (vv̈) = vαv̈α , etc. The tentative form for
Bµ(3) proportional to τ 3

0 is

τ 3
0 {a(v̇v̈)vµ/c2 + bv̇2v̇µ/c2 + d v̈̇µ}, (3.2)

where a, b and d are dimensionless numbers and c is the speed of light. Equation (1.3) imposes
the following restriction on a, b and d:

bv̇4/c2 + (a + 3d)v̈2 + (a + 4d)(v̇ v̈̇ ) = 0. (3.3)

For an arbitrary motion and any proper time, this equation has the unique solution a = b =
d = 0. This means that no 4-vector Bµ proportional to τ 3

0 exists. The situation is different for
Bµ proportional to τ 4

0 . A tentative Bµ(4) is the following:

Bµ(4) = τ 4
0 {a1v̇

4vµ/c4 + b1(v̇v̈)v̇µ/c2 + d1v̇
2v̈µ/c2}, (3.4)

where a1, b1 and d1 are dimensionless numbers. The imposition of (1.3) leads to d1 =
−(4a1 + b1)/5, and consistency with the conservation of angular momentum finally gives

Bµ(4) = k4τ
4
0 {7v̇4vµ/c4 − 8(v̇v̈)v̇µ/c2 − 4v̇2v̈µ/c2}, (3.5)

where k4 is an arbitrary dimensionless parameter, in general unrelated to k2. In fact, it is easy
to see that (3.5) satisfies equations (1.3) and (1.4), with

Aµλ(4) = −4k4τ
4
0 {v̇2(vµv̇λ − vλv̇µ)/c2}. (3.6)

However, (3.5) is not the unique admissible Bµ of order τ 4
0 ; another tentative form is the

following:

B̄µ(4) = τ 4
0

{
a2v̈

2vµ/c2 + b2(v̇ v̈̇ )vµ/c2 + d2v
(4)
µ

}
, (3.7)

where a2, b2 and d2 are dimensionless numbers and c is, as usual, the speed of light. The
imposition of (1.3) leads to b2 = 2a2 and d2 = −2a2/5. This reduces equation (3.7) to

B̄µ(4) = k̄4τ
4
0

{
5v̈2vµ/c2 + 10(v̇ v̈̇ )vµ/c2 − 2v(4)

µ

}
, (3.8)

where k̄4 is an arbitrary dimensionless parameter, unrelated to k4. It is easily seen that B̄µ(4)

of equation (3.8) also fulfils the restriction (1.4) with Āµλ(4) given by

Āµλ(4) = −2k̄4τ
4
0 {vµ̈v̇λ − vλ̈v̇µ + v̈µv̇λ − v̈λv̇µ}. (3.9)

It is rather clear that, in general, there exist 4-vectors Bµ of arbitrary powers of τ0

since conditions (1.3) and (1.4) are not very restrictive. However, in order to understand the
essential features of the enlarged Lorentz–Dirac equation (1.1), it is enough to study in detail
the equations associated with Bµ of (1.5), (3.5) and (3.8).
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4. Exact solutions

In this section, we will show that the enlarged Lorentz–Dirac equations (1.1) with Bµ given in
(1.5), (3.5) and (3.8) have exact solutions for the circular motion described in section 1. The
coordinates axes are chosen in such a way that the circular orbit of radius a lies in the x–y

plane and is centred at the origin, and the z-axis is perpendicular to the plane of the orbit. The
non-vanishing components of the external electromagnetic field are therefore

F 01 = Ex, F 02 = Ey, F 12 = Bz. (4.1)

The solutions that we are looking for describe the motion of an arbitrary number N of
identical charges that are rotating at a constant angular velocity ω. The charges are equally
spaced on a circumference of radius a. Because of the symmetry of the motion, the tangential
and radial components of the force acting on a charge are the same for any charge; therefore,
it is enough to consider the motion of only one of them, which we choose to be on the x-axis
at t = 0:

x0 = ct, x1 = a cos ωt, x2 = a sin ωt, x3 = 0. (4.2)

Besides the external field acting on the charge whose tentative trajectory is defined by
(4.2), we have to consider the retarded fields of the rest of the charges. To this end, we will
label the charge of (4.2) with the number N, while we will label the rest of the charges by the
natural number k, with k = 1, 2, 3, . . . , N − 1, increasing its value in the counter-clockwise
direction, that is, in the direction of the motion, since we are considering the charge e > 0. At
time t, the radial direction associated with the charge number k makes an angle (2π/N)k with
the radial direction associated with the charge number N. But the field strengths of the charge
k that are acting on the charge N are determined by the retarded position of the charge k. If we
denote by 2αk the angle that the radial direction associated with the retarded position of charge
k makes with the radial direction associated with the charge number N, then 2αk < (2π/N)k

and the retardation condition, which states that the time that the charge k takes to travel from
its retarded position to its actual position at time t is the same as the time that the light takes to
travel from the retarded position of charge k to the actual position of the charge N, translates
into the following relation:

kπ/N = αk + β sin αk, (4.3)

where β = aω/c. Equation (4.3) determines the angle αk in a unique way in terms of the
discrete variable k and the continuous variable β [3]. Of course, αk is time independent. If
we denote by Ekx, Eky, Ekz, Bkx, Bky and Bkz the Cartesian components of the retarded field
due to the charge k, we obtain, starting from the Lienard–Wiechert field strengths of a point
charge, the following expressions for the components that are different from zero:

Ekx = fk{sin(ωt + αk) + β sin(ωt + 2αk)} + gk cos(ωt + αk),

Eky = −fk{cos(ωt + αk) + β cos(ωt + 2αk)} + gk sin(ωt + αk),

Bkz =
( e

4a2

) β
{
s2
k + β2 sin2 αk

}
s3
k sin αk

,

(4.4)

where the time-independent parameters fk and gk are given by

fk = e/γ 2R2
k s

3
k ,

gk = eβ2(β + cos αk)/aRks
3
k ,

(4.5)

with
γ = (1 − β2)−1/2,

sk = 1 + β cos αk,

Rk = 2a sin αk.

(4.6)
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Therefore, the retarded fields of the charges are also of form (4.1).
In what follows, Ex and Ey are the Cartesian components of the total superposition

of electric fields; similarly, Bz denotes the total magnetic field. Using (4.1) and (4.2) and
Bµ given in (1.5), we obtain the following result for the µ = 1 component of the enlarged
Lorentz–Dirac equation (1.1):

−cos ωt = (ea/mc2β2γ ){Ex + βBz cos ωt} + λβγ (β2γ 2 + 1) sin ωt

− k2λ
2β2γ 2(β2γ 2 + 2/3) cos ωt, (4.7)

whereas the µ = 2 component is

−sin ωt = (ea/mc2β2γ ){Ey + βBz sin ωt} − λβγ (β2γ 2 + 1) cos ωt

− k2λ
2β2γ 2(β2γ 2 + 2/3) sin ωt, (4.8)

where λ is the dimensionless parameter

λ = 2e2

3mc2a
. (4.9)

The component µ = 0 of (1.1) can be obtained starting from (4.7) and (4.8), and therefore
can be ignored. Besides, the component µ = 3 of (1.1) does not impose any restriction on the
different parameters that characterize the motion under consideration.

If E denotes the magnitude of the external tangential electric field, the Cartesian
components Ex = −E sin ωt and Ey = E cos ωt are, like the retarded components (4.4),
time dependent. It is therefore more convenient to work in terms of the radial and tangential
components Eρ and Eφ of the total electric field, defined by

Eρ = Ex cos ωt + Ey sin ωt, Eφ = −Ex sin ωt + Ey cos ωt. (4.10)

Eρ and Eφ , in contradistinction to Ex and Ey , are time independent. In terms of them (4.7)
and (4.8) become

Eφ = (2e/3a2)β3γ 4 (4.11)

Eρ + βBz = −(mc2β2γ /ae){1 − k2λ
2β2γ 2(β2γ 2 + 2/3)}. (4.12)

Now, if Eφ(N),Eρ(N) and Bz(N) are the components of the electromagnetic field due
to the retarded fields of the remaining N − 1 charges, that is,

Eρ(N) =
N−1∑
k=1

Ekρ, (4.13)

Eφ(N) =
N−1∑
k=1

Ekφ, (4.14)

Bz(N) =
N−1∑
k=1

Bkz, (4.15)

then equations (4.11) and (4.12) determine, in a unique way, the following values of the
external electric and magnetic fields E and B respectively for which (4.2) constitutes an exact
solution of the enlarged Lorentz–Dirac equation (1.1) with Bµ(2) of equation: (1.5)

E = (2e/3a2)β3γ 4 − Eφ(N), (4.16)
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B = −(mc2βγ/ae){1 − k2λ
2β2γ 2(β2γ 2 + 2/3)} − β−1Eρ(N) − Bz(N). (4.17)

Following the same procedure, it is easy to show that (4.2) is also an exact solution of the
enlarged Lorentz–Dirac equation (1.1) for Bµ given in (3.5). In this case, the values of the
external fields that sustain the motion are

E = (2e/3a2)β3γ 4 − Eφ(N) (4.18)

B = −(mc2βγ/ae){1 − k4λ
4β6γ 6(4 + 7β2γ 2)} − β−1Eρ(N) − Bz(N). (4.19)

For the enlarged Lorentz–Dirac equation (1.1) with B̄µ(4) of (3.8), the values of the
external fields that allow trajectory (4.2) as an exact solution are

E = (2e/3a2)β3γ 4 − Eφ(N) (4.20)

B = −(mc2βγ/ae){1 + k̄4λ
4β4γ 4(2 + 5β2γ 2)} − β−1Eρ(N) − Bz(N). (4.21)

5. Discussion and comments

The enlarged Lorentz–Dirac equations (1.1) with Bµ of equation (1.5), (1.1) with Bµ of
equation (3.5) and (1.1) with Bµ of equation (3.8) reduce to the Lorentz–Dirac equation if
k2 = k4 = k̄4 = 0; therefore, the solutions (4.16), (4.17); (4.18), (4.19) and (4.20), (4.21)
are also the exact solutions of the Lorentz–Dirac equation in this case. However, in the
general case the solution of the Lorentz–Dirac equation for a given motion is different from
the corresponding solution of the enlarged equations; nevertheless, the external electric field
that sustains the motions is exactly the same, as is shown in equations (4.16), (4.18) and
(4.20). This result is expected since the external electric field is directly related to the rate of
radiation emitted by the system of charges. In fact, the external electric field E supplies the
power Nev · E to the charges, where v is the ordinary velocity. Besides, the kinetic energy
of the charges remains constant and, due to the symmetry of the motion, the energy stored
in the system of charges is also constant. Thus, the power that the external electric field
supplies to the charges must be necessarily radiated away, and therefore Nev · E is exactly
the rate of radiation associated with the motion under consideration. This is also the rate of
radiation obtained by computing the flux of the Poynting vector associated with the system
of charges across a sphere of an infinitely large radius that encloses the orbiting charges [3].
The external electric fields given in equations (4.16), (4.18) and (4.20) are not only the same,
but even more, they are completely independent of the dimensionless parameters that appear
in the 4-vector Bµ of equations (1.5), (3.5) and (3.8). This result is fully consistent with the
discussion of section 2, according to which the 4-vector Bµ arises from the energy–momentum
that remains tied to the electron, which in turn is dynamically independent of the part of the
energy–momentum that describes the radiation. The fact that the rate of radiation associated
with an enlarged Lorentz–Dirac equation is the same as the one that follows from the Lorentz–
Dirac equation means, in particular, that in the case of only one charge in a circular orbit
the rate of radiation of any enlarged equation is 2e2cβ4γ 4/3a2 and that when the number of
charges N goes to infinity the rate of radiation tends to zero [3].

From equations (4.17), (4.19) and (4.21) it follows that the value of the external magnetic
field, in contradistinction with the value of the external electric field, depends for a given
motion on the choice of Bµ. This means that the trajectories of the different enlarged Lorentz–
Dirac equations differ, in general, from each other and from the trajectory of the Lorentz–Dirac



Enlarged Lorentz–Dirac equations 8553

equation in the same external fields. In order to clarify this aspect, let us compare the magnetic
field associated with the Lorentz–Dirac equation and the magnetic field (4.17) in the case of
only one charge, that is,

B = −(mc2βγ/ae){1 − k2λ
2β2γ 2(β2γ 2 + 2/3)}. (5.1)

This magnetic field coincides with that of the Lorentz–Dirac equation if and only if k2 = 0.
Now, if we evaluate (5.1) for a given set of parameters e,m, a and ω with k2 �= 0, then
this value of B and the value E = (2e/3a2)β3γ 4 determine an exact solution of the enlarged
equation (1.1) with Bµ of equation (1.5) for one charge in a circular orbit of radius a. If we now
use these values of E and B as external fields in the Lorentz–Dirac equation, the corresponding
solutions of this equation will not, in general, describe a circumference of radius a, but, as
will be shown below, the trajectory will be very close to it.

The motion of ultrarelativistic electrons in synchrotrons and storage rings constitutes the
most prominent application of classical electrodynamics to a situation where the radiation
emitted by the electron plays a central role. In these machines, the external electric and
magnetic fields are not equal to the idealized external fields that define the exact solutions
of this paper; nevertheless, they are of the same order of magnitude. So, without the need
to perform a detailed study of the trajectory, formula (5.1) is useful in order to make an
estimation of the change in the magnetic field implied by the enlarged equation (1.1) with Bµ

of equation (1.5), with respect to the magnetic field prescribed by the Lorentz–Dirac equation
in synchrotrons and storage rings. In order to illustrate this point, let us use the parameters
of Cornell’s electron synchrotron, namely a = 104 cm and γ = 2 × 104, and let us take k2

of the order of one. Then, the corresponding exact solution of the Lorentz–Dirac equation
needs a magnetic field of 3333 G, and the difference with the magnetic field required by the
same solution in the case of the enlarged equation (1.1) with Bµ of equation (1.5) is of the
order of 10−13 G. Therefore, from a practical point of view both magnetic fields are the same
since it is impossible at all to measure and control a magnetic field as small as 10−13 G. In
other words, even if for given values of E and B the trajectories of the Lorentz–Dirac and the
enlarged equation (1.1) with Bµ of equation (1.5) are not exactly the same, they cannot be
discriminated in the relevant situation of synchrotrons and storage rings. If along the above
lines we compare the exact solution of the Lorentz–Dirac equation with the corresponding
solution of the enlarged equation (1.1) with Bµ of equation (3.5) for the same motion, the
difference between the magnetic fields is now of the order of 10−30 G. Besides, it is rather
evident that this difference becomes smaller if we we consider enlarged equations with Bµ of
higher powers of τ0, since τ0 is a very small number, of the order of 10−23 s. Therefore, since
the effect of Bµ is so small, it can be inferred that in synchrotrons and storage rings, the use of
an enlarged Lorentz–Dirac equation would result, from a practical point of view, in the same
trajectories that follow from the Lorentz–Dirac equation.

The conservation of energy, momentum and angular momentum, the Maxwell equations
and the point model for the electron allow the construction of expressions for Bµ that contain
derivatives of arbitrarily high order in the 4-velocity. However, these fundamental principles
do not allow us to privilege Bµ proportional to a particular power of τ0 nor to determine the
values of the dimensionless parameters that appear in it. Thus, instead of a unique equation
of motion, classical electrodynamics gives rise to a huge number of them, for instance, by
choosing in equation (1.5) any value for k2 in a continuous range around the value k2 = 1. This
in turn gives rise to a bundle of different trajectories in the same external fields. However, we
have showed that this situation does not present practical problems in the design or operation of
synchrotrons and storage rings. Therefore, the preconception that classical electrodynamics
must determine a unique and perfectly well-defined trajectory for an electron in a specific
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external electromagnetic field not only does not follow from the three essential components
of Dirac’s approach, but it is not even needed in experimental and practical applications of
classical electrodynamics which, in definitive, are the supreme arbitrators in physics. Let us
remark that the design and operation of synchrotrons is actually realized with equation (1.1)
where not only the 4-vector Bµ is neglected, but also the term v̈µ since this last term is
much smaller than the term v̇2vµ/c2 for ultrarelativistic electrons [21, 22], the case in which
equation (1.1) becomes Bonnor’s equation [8].

The self-accelerating solutions of an enlarged equation are eliminated, like in the case of
the Lorentz–Dirac equation, by imposing the condition of inertial motion in the remote future.
To make this point clear, it is useful to consider the motion of a charge along a straight line.
Let us then consider a time-independent electric field whose only component E(x) points
along the positive x-axis, and in addition vanishes identically outside the interval 0 � x � l.
For definiteness, let us choose a charge e > 0 and consider the Eliezer equation, that is,
equation (1.1) with Bµ of equation (1.5). In this case, it is convenient to write the non-
vanishing components of the 4-velocity in terms of the rapidity w(τ) as follows [23]:

v0 = c cosh(w/c), v1 = c sinh(w/c). (5.2)

Then, since F 01 = E is the only non-vanishing component of the field strengths Fµν ,
equation (1.1) becomes

ẇ − τ0ẅ = f (τ) + k2τ
2
0 (ẇ3/3c2 − 2 ẇ̈/3), (5.3)

where f (τ) = eE/m. In the case of the Lorentz–Dirac equation, that is, for k2 = 0, the
solution of equation (5.3) with ẇ(τ ) = 0 in the remote future is

ẇ = eτ/τ0

τ0

∫ ∞

τ

e−τ ′/τ0f (τ ′) dτ ′. (5.4)

In fact, if τ1 is the value of the proper time at which the charge reaches the point x = l, then
(5.4) implies that ẇ = 0 for any τ > τ1. In the case of k2 �= 0, the solution of (5.3) satisfies
the following integro-differential equation:

ẇ = eτ/τ0

τ0

∫ ∞

τ

e−τ ′/τ0
{
f (τ ′) + k2τ

2
0 (ẇ3/3c2 − 2 ẇ̈/3)

}
dτ ′, (5.5)

whose solution can be found by successive iterations starting from the solution w1(τ ) of (5.4).
If w1(τ ) is introduced in the integrand of (5.5), the first iteration leads to a solution w2(τ )

which satisfies ẇ2(τ ) = 0 for τ > τ1. Now, since this property is valid for any iteration, the
solution of (5.3) will be such that ẇ(τ ) vanishes in the remote future. If τ = 0 is chosen
as the proper time corresponding to the point x = 0, then from equation (5.5) it follows
that, in general, ẇ(τ ) is different from zero for τ < 0, in spite of that for x < 0 there is no
electric field. The amount of acausality is a function of the 4-vector Bµ under consideration.
However, the idea [24] that preacceleration can be eliminated in an enlarged equation that
considers all the permissible Bµ in the form of a power series in the parameter τ0 does not
seem feasible because of the highly nonlinear character of each Bµ and the infinitely large
number of arbitrary dimensionless parameters that would be present in such a case. Thus,
the violation of causality appears to be an innate feature of the point model for a charge in
classical electrodynamics.

From the point of view that the quantum theory of radiation is more fundamental than
the corresponding classical theory, it may seem that to study the dynamics of a point electron
in classical electrodynamics is unfruitful. However, the simpler mathematical formalism of
the classical theory, together with its more direct physical interpretation, may shed light into
related problems of the quantum theory. The fact that the three fundamental components of the



Enlarged Lorentz–Dirac equations 8555

Dirac classical theory of the electron also play a central role in the quantum theory of radiation
constitutes a clear indication that both theories are profoundly connected. Unfortunately,
however, the intricate mathematical formalism of quantum electrodynamics has made difficult
to make this connection explicit. So, it is not at all meaningless to attempt to throw light into
this question by starting from the classical theory of radiation. We will illustrate this aspect
by showing that classical electrodynamics suggests, in a rather natural way, a new approach to
deal with tiny effects as the Lamb shift and the anomalous magnetic moment of the electron
in the spectrum of the hydrogen atom. To this end, we will focus our attention on the most
simple, direct and natural choice for the 4-momentum of the electron, that is, the 4-momentum
associated with the Lorentz–Dirac equation given in equation (2.7). This formula shows that
the 4-momentum of the electron is mvµ only if the electron is in a uniform motion, that is, for
the case of a free electron. However, when the electron is under the influence of an external
field its 4-acceleration v̇µ is different from zero and the 4-momentum of the electron has an
additional contribution given by the second term on the right-hand side of equation (2.7). In
order to make an estimate of the importance of the additional contribution with respect to the
main one given by mvµ, let us consider the case of a synchrotron, which is relevant in classical
electrodynamics. For definiteness, let us choose the parameters of the Cornell synchrotron,
which has a radius r = 104 cm and a factor γ = 2 × 104. The spatial part of the second
term in (2.7) is of the order of 2e2γ 2a/3c3, where the acceleration a is of the order of 1017

cm s−2. Therefore, the second term of (2.7) is of the order of 10−25 g cm s−1, while the
main contribution is of the order of mcγ ∼ 10−13 g cm s−1. This means that the contribution
to the electron 4-momentum due to the energy–momentum tied to the electron is 12 orders
of magnitude smaller than the main part mcγ , and therefore it is completely negligible. In
particular, this explains why the term proportional to v̈µ in equation (1.1) is neglected in the
design of a synchrotron.

In section 2 it was clearly stated that from a physical point of view the second term in (2.7)
has its sources (like the first term) in the energy–momentum that remains tied to the electron,
so it is natural to expect that this picture is also valid in a quantum description. The hydrogen
atom is, certainly, a quantum system, but in spite of this equation (2.7) is still useful to obtain
the order of magnitude of the terms that appear in it by considering the average value v̄

of the velocity in the fundamental state of the hydrogen atom. As is known, v̄ is of the order
of 3 × 108 cm s−1. Besides, the hydrogen atom is weakly relativistic and for this reason
equation (2.7) can be written as follows:

Pb = mv − (2e2/3c3)a, (5.6)

where v and a are the ordinary velocity and acceleration, respectively. Since the Bohr radius
is of the order of 10−8 cm, the average acceleration ā is of the order of 1025 cm s−2. Thus, the
second term on the right-hand side of equation (5.6) is of the order of 10−25 g cm s−1, while the
main part mv̄ is of the order of 10−19 g cm s−1. Therefore, the additional contribution to mv̄

in (5.6) is only six orders of magnitude smaller than the main one. This result, together with
the fact that the spectrum of the hydrogen atom is measured with very high accuracy, means
that, in contradistinction with the case of a synchrotron, in the case of the hydrogen atom the
contribution of the second term in (5.6) cannot be neglected. This aspect can be clarified by
comparing the additional momentum given by the second term in (5.6) with the momentum
eA/c associated with a uniform magnetic field H along the z-axis, that is, with A ∼ rH ,
where the radius r is of the order of the Bohr radius. Thus, in the hydrogen atom case, the
additional momentum of 10−25 g cm s−1 is nearly the same momentum as the one associated
with a homogeneous magnetic field of the order of 1000 G, which, as is known, gives rise to a
splitting of the order of 10−5 eV in the spectrum of the hydrogen atom. But the splitting due
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to the Lamb shift is also, roughly speaking, of this order of magnitude, and therefore it seems
rather natural to expect that the additional momentum in (5.6) is related to the Lamb shift. This
expectation is reinforced by taking into account that in quantum electrodynamics the cloud of
virtual photons that surrounds the electron plays a central role in the calculation of the Lamb
shift and the anomalous magnetic moment. The exact evaluation of the Lamb shift requires,
of course, a quantum formulation. According to the above view, the customary momentum
operator of quantum mechanics p = −ih̄∇ is exact only for a free electron, and in the case of
the hydrogen atom it should be replaced by the quantum version of (5.6). In this conception,
it seems rather natural to calculate the Lamb shift as well as the anomalous magnetic moment
starting from the Pauli equation, with the corresponding relativistic corrections, and where
p = −ih̄∇ is replaced by p = −ih̄∇ + q, where q is the quantum operator, obtained with
the help of the techniques of quantum mechanics, associated with the second term on the
right-hand side of equation (5.6). This work is in progress and the results will be presented in
a forthcoming paper.
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